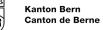
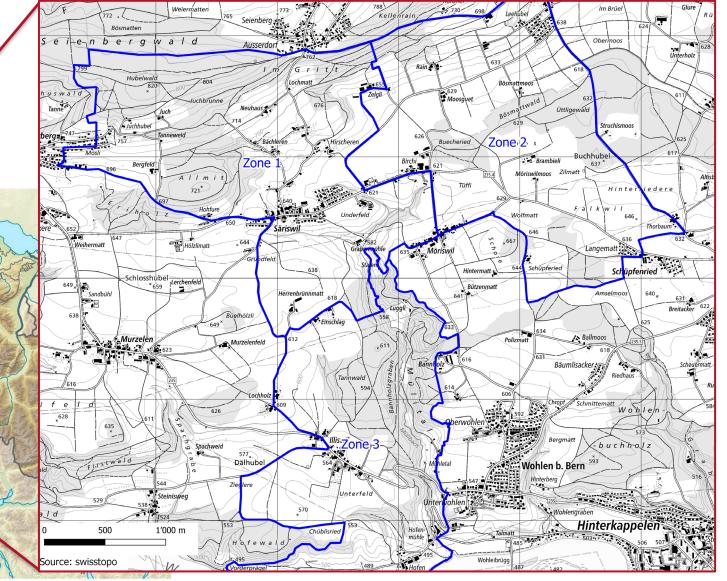


Einführung und Ausgangslage

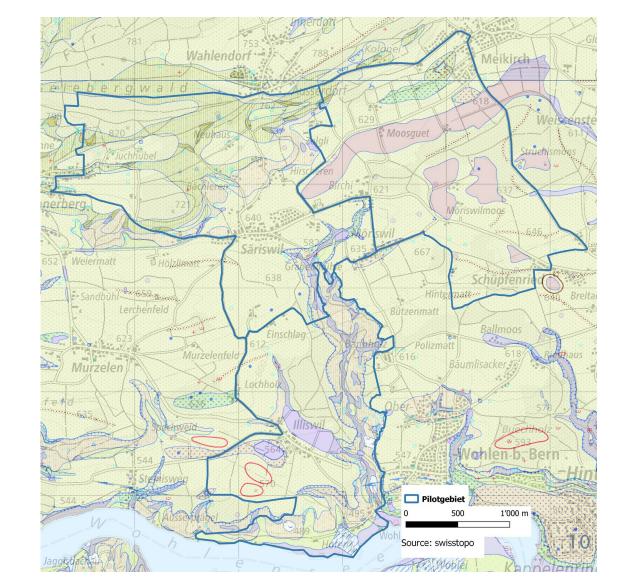

- \triangleright Flächendeckende Kartierungen bedingen grössere Kartierlose ightarrow erschweren Übersicht
- > Wo menschliche Hirnkapazität nicht ausreicht, können Rechenmaschinen helfen

Kernfrage 2 des WA-Boden-Projektes:

Wie kann das Ineinandergreifen von verschiedenen Technologien, Arbeitsschritten und beteiligten Akteurinnen und Akteuren in einem hochkomplexen und grossen Projekt optimal gewährleistet werden?

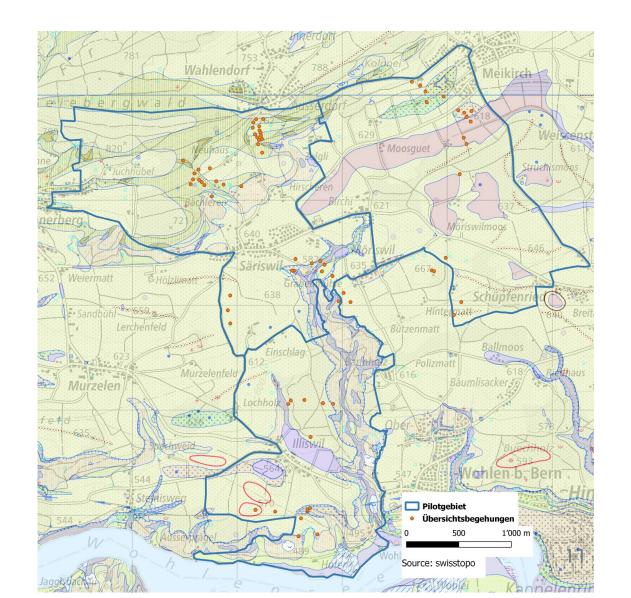


Kartierperimeter


- ~1'000 ha Wald und landwirtschaftliche Nutzfläche
- typischer Ausschnitt aus dem (Berner) Mittelland

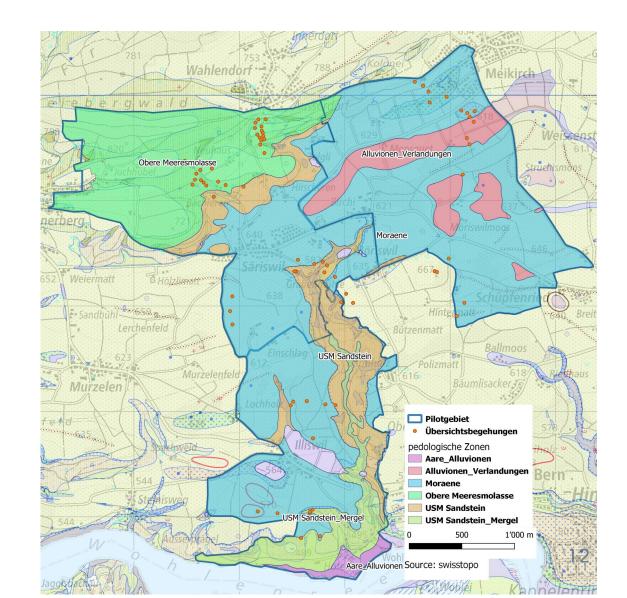
Übersicht gewinnen

- Grundlagendaten-Studium
 - Fokus auf Geologie/Ausgangsmaterial



- Berner Fachhochschule
 Haute école spécialisée bernoise
 Bern University of Applied Sciences

 Kanton Bern
 Canton de Be
 - Kanton Bern Canton de Berne


- Grundlagendaten-Studium
 - Fokus auf Geologie/Ausgangsmaterial
- Übersichtsbegehungen
 - Finden sich Ausgangsmaterialien im Bohrstock wieder?

Berner Fachhochschule
Haute école spécialisée bernoise
Bern University of Applied Sciences

Kanton Bern
Canton de Berne

- Grundlagendaten-Studium
 - Fokus auf Geologie/Ausgangsmaterial
- Übersichtsbegehungen
 - Finden sich Ausgangsmaterialien im Bohrstock wieder?
- ▶ Bildung «pedologische Zonen»≈ grobe Konzeptkarte

Übersicht gewinnen

- Welche Landschaftseinheiten in welchem Massstab sind für Bodenbildung entscheidend?
 - → Auswahl DHM-Ableitungen

- > 17 Ableitungen aus dem digitalen Höhenmodell; z.B.:
 - Topografischer Nässe-Index (twi)
 - Tendenz zur Wasserakkumulation

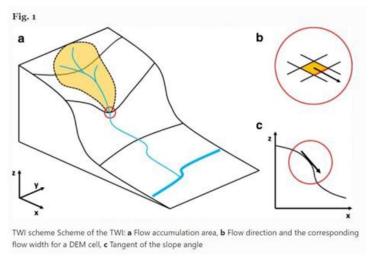
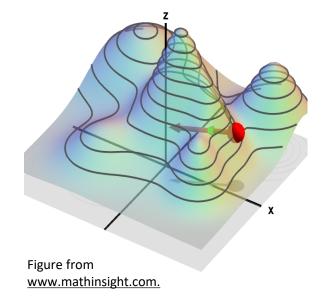
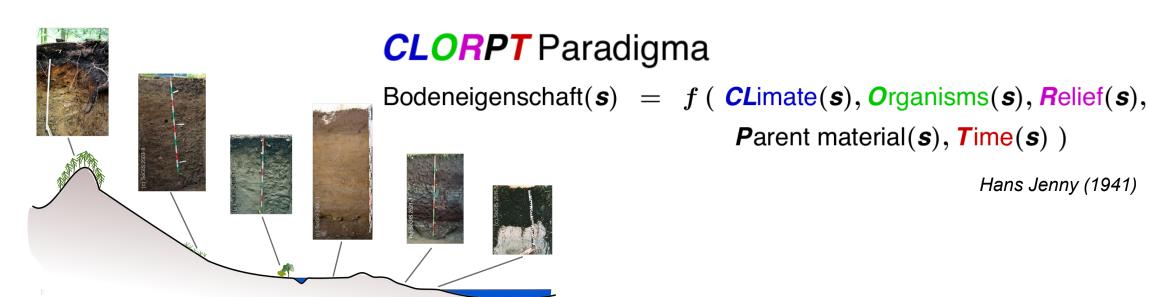



Figure from Mattivi et al. 2019.

 Planare und hangwärtsgerichtete Krümmung (jeweils 10x10 und 25x25m)

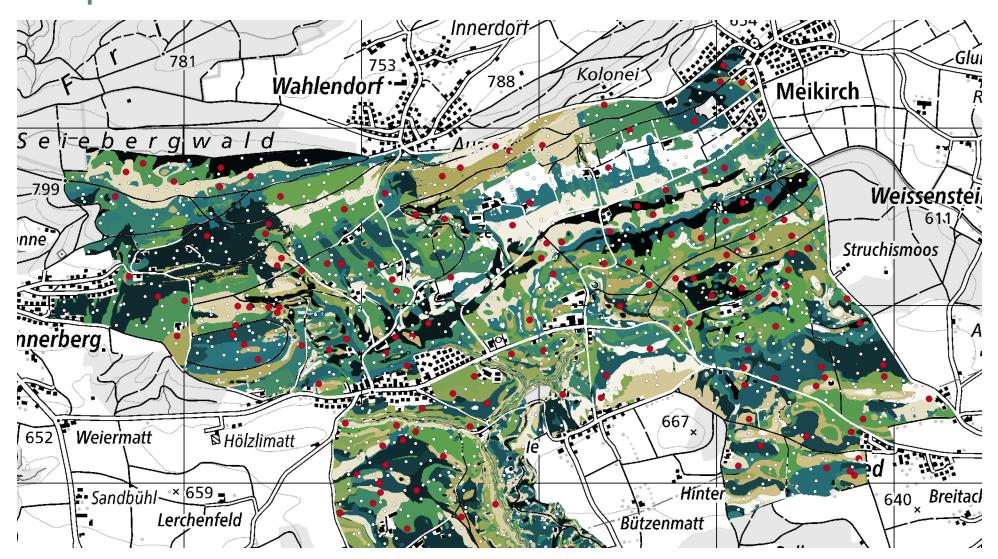
 Talboden- und Gipfel-Flachheit (Akkumulationsfläche und Plateau-Grösse) 25x25m



- Landnutzung und grobe Konzeptkarte als Stratifizierungselement
- > Bildung von feature spaces durch Kombinationen der Bodenbildungsfaktoren
- > > Stratified Feature Space Coverage Sampling Design

- 1'250 Polygone mit ähnlichen Bodeneigenschaften≈ detaillierte Konzeptkarte
- Ein Beprobungspunkt pro Cluster im jeweiligen inhaltlichen Zentrum (Master-Stichprobenplan)

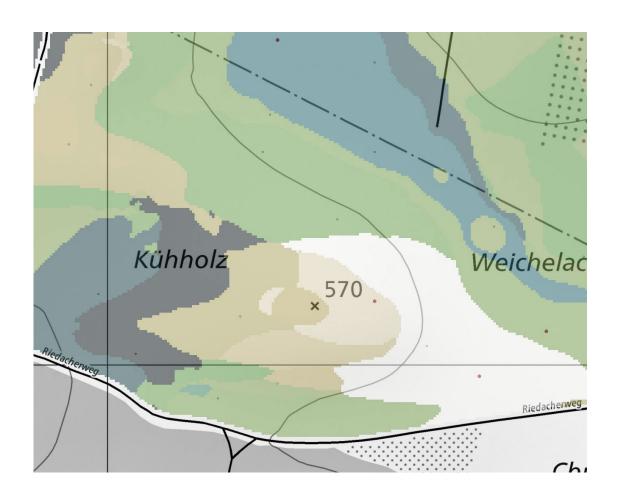
- 1'250 Polygone mit ähnlichen Bodeneigenschaften
 ≈ detaillierte Konzeptkarte
- Ein Beprobungspunkt pro Cluster im jeweiligen inhaltlichen Zentrum (Master-Stichprobenplan)
- Für Explorationsphase zu 250 Clustern gruppiert ≈ mittelfeine Konzeptkarte


- 1'250 Cluster mit ähnlichen Bodeneigenschaften
 ≈ detaillierte Konzeptkarte
- Ein Beprobungspunkt pro Cluster im jeweiligen inhaltlichen Zentrum
- Für Explorationsphase zu 250 Clustern gruppiert ≈ mittelfeine Konzeptkarte
- Explorationspunkt ist potentieller Profilstandort

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences Kanton Bern Canton de Berne

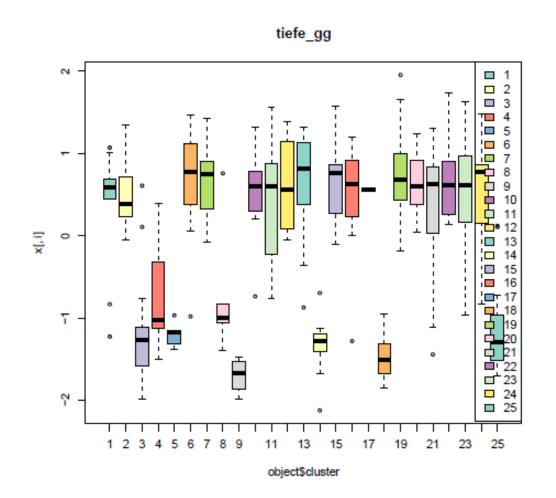
Stichprobenplan erstellen = Konzeptkarte erstellen

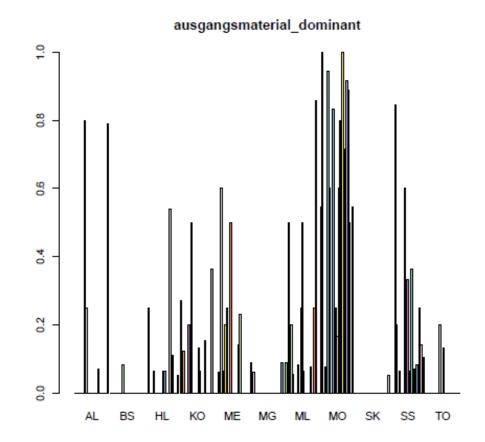
Explorationserhebungen



250 Explorationspunkte ergänzt mit ca. 50 frei wählbaren Punkten Stichprobenplan garantiert
 Repräsentativität, vernachlässigt aber (lokale) Extrema

Explorationserhebungen





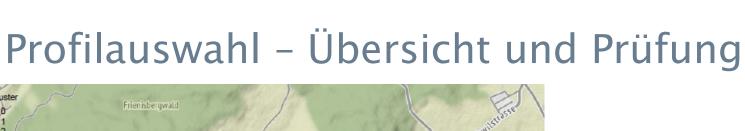
- 290 Explorationsbohrungen wurden einem Clustering unterzogen, die sie nach der Ähnlichkeit ihrer Eigenschaften gruppiert (k-prototype-clustering)
- 25 Eigenschaften wurden einbezogen und in 25 Cluster eingeteilt

cluster	ausgangsmatueberlagerung	ausgangsmaterial dominant	bodentyp	corg obersterHoriz	hat AL	hat cn MO	hat drainage	hat g	hat g gg MO	hat gg	hat kalk	hat litho wechsel	hat ut PK	kies UB	maechtigkeit A	maechtigkeit OB	maechtigkeit UB	nutzung	Bud	sand OB	sand UB	schluffOB	schluffUB	tiefe gg	ton UB
1	KO-über	МО	Е	6	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	4	68	57	52	AK-KW	96	45	47	37	34	183	19
2	МО	МО	В	3	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	17	34	30	75	AK-KW	90	47	48	33	27	193	25
3	andere	ML	В	4	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	1	35	33	62	AK-KW	58	35	37	44	39	70	24
4	SS	SS	Ε	8	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	1	28	29	42	AK-KW	55	64	64	24	20	103	9
5	andere	ME	Ε	74	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	0	24	21	48	WA	50	35	29	39	40	68	32
6	МО	MO	В	3	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	10	40	31	75	AK-KW	80	37	45	44	32	209	22
7	МО	MO	Ε	11	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	5	30	21	76	WA	91	41	41	42	39	204	20
8	andere	AL	F	7	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	1	45	32	61	WE-WI-BG	54	37	40	44	35	104	25
9	KO-über	KO	ı	3	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	0	33	33	53	WE-WI-BG	34	16	14	59	55	31	31
10	MO .	МО	В	3	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	16	43	42	42	AK-KW	67	47	57	36	26	196	17
11	andere	SS	E	24	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	0	28	23	62	WA	75	0	58	0	29	186	14
12	MO-über	ME	E	4	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	1	35	35	74	WE-WI-BG	87	49	28	32	55	201	17
13	MO-über	ML	В	3	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	1	33	29	44	AK-KW	58	47	62	36	20	203	9
14	KO-über	МО	B B	4	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	5	33	31	73	AK-KW	55	40	45	42 39	25 37	59	17
15 16	MO MO-über	MO MO	E	36	FALSE FALSE	FALSE FALSE	FALSE FALSE	TRUE TRUE	TRUE TRUE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	6	26 30	24 21	43 68	AK-KW WA	55 76	41 60	42 58	26	25	202 190	20 17
17	MO	МО	Т	22	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	20	38	20	80	WA	101	40	42	45	40	197	18
18	MO-über	МО	Y	4	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	3	33	34	48	AK-KW	48	39	36	40	40	48	24
19	HL	HL	E	5	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	2	26	26	70	WE-WI-BG	80	25	26	53	48	210	25
20	МО	МО	Ε	5	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	7	33	29	68	AK-KW	65	55	58	30	27	203	16
21	МО	МО	В	4	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	7	32	33	68	AK-KW	77	51	52	31	26	178	21
22	МО	МО	Т	30	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	1	26	20	77	WA	98	52	52	32	29	206	19
23	ML	ML	Ε	69	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	1	18	15	67	WA	69	39	41	41	38	193	21
24	KO-über	MO	В	5	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	3	63	36	71	AK-KW	96	49	49	32	29	191	22
25	andere	AL	F	8	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	4	40	30	38	AK-KW	49	53	63	29	23	72	9

			Tab	elle 2	2: Cluster-	Zentrei	n bzw.	Mittel	werte ode	er Modalw	erte pro V	ariable. Ki	ünstlich e	rstellte Bo	ohrung im	Zentrum j	edes Clust	ers.															
			2002	rinster	ausgangsmat ueberlagerung	ausgangsmaterial dominant	bodentyp	corg obersterHoriz	hat AL	hat cn MO	hat drainage	hat g	hat g gg MO	hat gg	hat kalk	hat litho wechsel	hat ut PK	kiesUB	maechtigkeit A	maechtigkeit OB	maechtigkeit UB	nutzung	bng	sand OB	sand UB	schluffOB	schluffUB	tiefe gg	tonUB				
				1	KO-über	МО	Е	6	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	4	68	57	52	AK-KW	96	45	47	37	34	183	19				
					МО	МО	В	3	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	17	34	30	75	AK-KW	90	47	48	33	27	193	25				
					andere SS	ML SS	B E	8	FALSE FALSE	FALSE FALSE	FALSE FALSE	TRUE TRUE	FALSE FALSE	TRUE TRUE	FALSE FALSE	FALSE FALSE	FALSE FALSE	1	35 28	33 29	62 42	AK-KW AK-KW	58 55	35 64	37 64	44 24	39 20	70 103	24 9				
	<u></u>	ŧ				ш		74	FMOF	FMCF	FALCE	TOUE	FALCE	TOUE	FALCE	FMOF	FMCF	^	24	21	40	***		25	20	20	-10		22				
cluster	ausgangsmat ueberlagerung	ausgangsmaterial dominant	bodentyp	corg obersterHoriz			hat cn MO		hat drainage	hatg		hat g gg MO	hat gg		ומן אמן א	hat litho wechsel	hat ut PK		kies UB		maechtigkeit A	maechtigkeit OB maechtigkeit UB	nutzung				bud	sand OB	sand UB	schluffOB	schluff UB	tiefe gg	ton UB
21	МО	МО	В		4 FA	LSE	FA	LSE	FAL	SE T	RUE	TRUE	FAL	SE I	FALSE	FALSE	FAL	.SE	7	3	32	33 68	Al	K-KW		7	7	51	52	31	26	178	21
			18		MO-über HL	MO HL	Y	4	FALSE FALSE	FALSE FALSE	FALSE FALSE	TRUE	TRUE FALSE	TRUE FALSE	FALSE FALSE	TRUE FALSE	FALSE FALSE	3	33 26	34 26	48 70	AK-KW WE-WI-BG	48 80	39 25	36 26	40 53	40 40 48	48	24 25				
			20		MO	MO	E	5	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	7	33	29	68	AK-KW	65	55	58	30	27	203	16				
			2		МО	МО	В	4	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	7	32	33	68	AK-KW	77	51	52	31	26	178	21				
			22		МО	МО	T	30	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	1	26	20	77	WA	98	52	52	32	29	206	19				
			23		ML KO übar	ML	E	69	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	1	18	15	67	WA	69	39	41	41	38	193	21				
			24		KO-über andere	MO AL	B F	5 8	FALSE TRUE	FALSE FALSE	FALSE TRUE	TRUE TRUE	TRUE FALSE	FALSE TRUE	FALSE TRUE	TRUE TRUE	FALSE FALSE	3 4	63 40	36 30	71 38	AK-KW AK-KW	96 49	49 53	49 63	32 29	29 23	191 72	22 9			2	24
						- 42	-	_													-			30	30	20							

➤ Charakterisieren → schwach saure, tiefgründige, schwach pseudogleyige Braunerde an einem Hang/ auf Kuppe aus Moräne im Ackerland

feld_id_link	nutzung	landschaftselement	gelaendeform	neigung	bodentyp	ausgangsmaterial_dominant	ausgangsmat_ueberlagerung	horizontfolge	Bud	hat_g	hat_gg	tiefe_gg	hat_drainage	untertypen	maechtigkeit_A	maechtigkeit_0B	maechtigkeit_UB	kalkgrenze	corg_obersterHoriz	ton_0B	ton_UB	schluff_OB	schluff_UB	sand_0B	sand_UB	kies_0B	kies_UB
E1325	AK-KW	KR	a	4	В	МО	МО	Ah,p-AB-B(g)-Bg	82	TRUE	FALSE	206	FALSE	E1,I1	45	25	85	-1	3	23	23	25	25	52	52	5	10
E741	AK-KW	KR	c	6	В	МО	MO	$Ah,\!p\text{-}BA(h),\!(p)\text{-}B(t),\!(g)\text{-}B(t),\!(g)$	101	TRUE	FALSE	196	FALSE	E2,ZT,I1	40	40	68	-1	3	19	26	35	30	46	44	1	8
E1180	AK-KW	НН	С	6	Т	МО	МО	Ah,p-Eg-It-(C)Bg-BCg	73	TRUE	FALSE	202	FALSE	E2,I2	24	40	70	-1	2	19	27	30	25	51	48	4	4
E1087	AK-KW	НН	b	6	В	МО	MO	Ah,p-B(x),(g)-B(x),g-CB-BC	64	TRUE	FALSE	203	FALSE	E2,I1	25	25	75	65	2	17	16	30	25	53	59	8	8
E861	AK-KW	НН	b	9	В	МО	MO	Ah,(p)-AB-Bcn-BCg	73	TRUE	FALSE	216	FALSE	E2,I1	43	43	67	-1	2	18	24	30	20	52	56	5	12
E1115	WA	HH	k	20	В	MO	MO	Ah-A-B(g)-Bg	91	TRUE	FALSE	153	FALSE	n	30	30	80	-1	6	25	28	30	30	45	42	3	1
E108	AK-KW	HH	f	- 11	В	МО	МО	Ah,p-AB-B-BC(g)-C(g)	74	TRUE	FALSE	252	TRUE	E2,I1	45	45	65	-1	3	16	22	25	35	59	43	3	7
E21	WE-WI-BG	HH	l	16	В	MO	MO	Ah-A-B-BC[g]-Cg	74	TRUE	FALSE	164	FALSE	E2,G3	35	35	53	90	4	25	28	25	30	50	42	5	10
E1259	WE-WI-BG	EE	C	3	Т	MO	MO	Ah-EB-I(g)-CB	90	TRUE	FALSE	209	FALSE	E2,I1	25	25	75	-1	4	17	18	25	25	58	57	5	3
E3	WE-WI-BG	HH	d	9	E	MO	MO	Ah-B-CB-C(g)	85	TRUE	FALSE	221	FALSE	E3	27	27	83	-1	4	16	14	35	35	49	51	5	7
E901	AK-KW	HF	a	2	E	MO	MO	Ah,p-AB-B-BCg-(B)C	60	TRUE	FALSE	194	TRUE	E3,I2	35	35	40	-1	2	18	21	30	20	52	59	3	6
E900	AK-KW	HH	C	10	E	MO	MO	Ah,p-B[g]	78	TRUE	FALSE	206	TRUE	E4	30	30	64	-1	4	12	14	35	15	53	71	1	5
E780	AK-KW	HH	b	7	E	МО	MO	Ah,p-BA-B-Bg-BCg-(B)Cgg	64	TRUE	TRUE	90	FALSE	E3,G3	26	26	64	-1	3	19	14	30	30	51	56	4	10
E1211	WE-WI-BG	HH	b	7	E	MO	MO	Ap-B-B(t)-B(t)C(g)	74	TRUE	FALSE	217	FALSE	E3,ZT	20	20	85	-1	2	22	24	35	30	43	46	2	6
E1387	AK-KW	EE	a	3	В	МО	MO	Ah-A-Bg-Bgg-B(cn)Cgg	85	TRUE	TRUE	74	FALSE	E1,I2	39	39	84	-1	4	18	18	25	35	57	47	2	3
E544	AK-KW	HF	e	8	В	HL	HL	Ah,p-(E)B-(Ig)B(t),cn	92	TRUE	FALSE	122	FALSE	E2	30	30	77	-1	2	17	17	30	30	53	53	1	1
E1301	AK-KW	EE	е	2	В	МО	MO-über	Ap-ABg-Bx,g-CBcn-II BCg	59	TRUE	FALSE	178	FALSE	E2,I2	36	36	69	-1	2	16	26	30	15	54	59	3	12
E1708	AK-KW	НН	l	21	В	HL	HL	A(h),p-(B)A(h)-(Ecn)Bg-Bg,cn	82	TRUE	FALSE	238	FALSE	E2,I2	40	40	65	-1	3	23	23	35	30	42	47	2	1
E1286	AK-KW	НН	b	7	В	МО	MO-über	Ap-B-Bcn-CBg-II BCg	70	TRUE	FALSE	173	FALSE	E2,I1,G2	25	25	75	-1	3	24	28	35	30	41	42	3	4
E274	WA	НН	Ь	8	T	МО	MO	Ol-Of-Ahh-EA-B-It,x,g-C	103	TRUE	FALSE	222	FALSE	E3,I2	37	45	45	-1	4	12	22	30	20	58	58	5	12
E1695	WA	HX	l	27	E	МО	МО	Ah-(E)A-(E)B(g)-(I(cn))B(t),(g)-(I(cn))B(t),(g)	100	TRUE	FALSE	169	FALSE	E3,ZT,I1	28	28	80	-1	5	16	24	30	30	54	46	4	15
E1592	AK-KW	HF	a	3	В	МО	MO-über	Ah-B-B(g)-II CB(g)-BcnCg-Cg,cn	78	TRUE	FALSE	218	FALSE	E2,I1	31	31	69	-1	2	11	11	35	35	54	54	2	0
E1690	WE-WI-BG	HT	f	15	В	МО	МО	Ah-BA-B-Bg-Cgg	69	TRUE	TRUE	75	FALSE	E2,G3	25	25	50	-1	4	14	14	25	20	61	66	3	5
E46_tns	AK-KW	НН	c	8	0	HL	andere	Ah,p-B(g)-CBg-II BCg	69	TRUE	FALSE	240	FALSE	G3,PE	26	26	84	-1	2	14	16	40	30	46	54	2	6
E937	AK-KW	НН	b	6	T	МО	МО	Ap-E-BI(t),(cn)-CB(t),(g)	75	TRUE	FALSE	231	TRUE	E3	28	50	55	-1	4	15	28	40	15	45	57	5	10
E965	WE-WI-BG	НН	b	8	T -	МО	МО	Ah-EAg-It,g,cn-CcnBgg	63	TRUE	TRUE	85	FALSE	E2,I2	42	42	68	-1	3	17	24	35	30	48	46	6	11
E330	WA	HH	b	9	Т	МО	MO	Ol-Oh-Ahh-EA-Bg-It,x,gg-(B)C	52	TRUE	TRUE	50	FALSE	E3,I3	30	33	44	-1	25	16	23	25	20	59	57	3	9


			Tabel	le 2: Clus	ter-Zentre	en bzw.	Mittel	werte ode	r Modalw	erte pro V	ariable. Ki	ünstlich er	stellte Bo	hrung im	Zentrum j	edes Clust	ters.															
			cluster	ausgangsmatueberlagerung	্য ত ausgangsmaterial dominant	m bodentyp	o corg obersterHoriz	FALSE	Pat cu MO	hat drainage	TRUE	Pat 8 88 MO	hat gg	hat kalk EALSE	hat litho wechsel	FALSE	kies UB	maechtigkeit A	25 maechtigkeit OB	75 maechtigkeit UB	nutzung RY-KW		80 pues 6 45		schluff OB	schluffUB	tiefe gg	ton UB				
				KO-ub	el MO		0	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	4	68	51	52	AN-NW	9	0 43	41	31	34	103	19				
cluster	ausgangsmatueberlagerung	ausgangsmaterial dominant	bodentyp	corg obersterHoriz	hat AL	EVI CM CO tech		hat drainage	† -	۵۵ 	hat g gg MO	hatgg		hat kalk	hat litho wechsel	hat ut PK				maechtigkeit A	maechtigkeit OB	maechtigkeit UB	nutzung			Bud	sand OB	sand UB	schluffOB	schluffUB	tiefe gg	ton UB
14	KO-über	МО	В	4 F	FALSE	FAL	.3E	FALSE	E TR	UE	TRUE	TRUE	. FA	LSE	TRUE	FALS	E	5	33		31 7	3 AI	<-KW		55	40) 4	5 4	2 2)	59	17
			15	MO	МО	В	3	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	б	26	24	43	AK-KW		5 41	42	39	31	202	20				
			16	MO-üb		E -	36	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	1	30	21	68	WA		6 60		26	25	190	17				
			17	MO MO-üb	MO oer MO	V	22	FALSE FALSE	FALSE FALSE	FALSE	FALSE TRUE	FALSE	FALSE	FALSE	FALSE TRUE	FALSE FALSE	20 3	38 33	20 34	80 48	WA AK-KW	10			45	40	197 48	18 24				
			18 19	HL	per MO HL	F	5	FALSE	FALSE	FALSE FALSE	TRUE	TRUE FALSE	TRUE FALSE	FALSE FALSE	FALSE	FALSE	2	33 26	26	70	WE-WI		o 39 0 25		53	48	210	25				
			20	МО	MO	F	5	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	7	33	29	68	AK-KW				30	27	203	16				
			21	МО	МО	В	4	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	7	32	33	68	AK-KW		5 55 7 51		31	26	178	21				
			22	МО	МО	Т	30	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	1	26	20	77	WA	9	8 52		32	29	206	19				
			23	ML	ML	Е	69	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	1	18	15	67	WA	6	9 39	41	41	38	193	21				
			24	KO-üb	er MO	В	5	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	3	63	36	71	AK-KW	9	6 49	49	32	29	191	22			7	6
			25	andere	e AL	F	8	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	4	40	30	38	AK-KW	4	9 53	63	29	23	72	9			_	

Spezialitäten /Ausreisser identifizieren

Tabelle 16: Standorte am nächsten vom 14. Cluster-Zentrum (von oben nach unten mit zunehmender Distanz).

feld_id_link	nutzung	landschaftselement	gelaendeform	neigung	bodentyp	ausgangsmaterial_dominant	ausgangsmat_ueberlagerung	horizontfolge	Bud	hat_g	hat_gg	tiefe_gg	hat_drainage	untertypen	maechtigkeit_A	maechtigkeit_OB	maechtigkeit_UB	kalkgrenze	corg_obersterHoriz	ton_OB	ton_UB	schluff_0B	schluff_UB	sand_OB	sand_UB	kies_0B	kies_UB
E1109	AK-KW	нн	b	6	В	МО	KO-über	Ah,p-A(h)Bg-II Bg,cn-II CcnBgg	54	TRUE	TRUE	71	FALSE	E2,I2	35	35	75	-1	2	18	24	55	25	27	51	0	4
E926	AK-KW	НН	f	14	W	МО	KO-über	Ah,p-Ah-II (C)Bgg-Ii, BggC(r)	41	TRUE	TRUE	33	TRUE	E2,G5,R1,DD	33	33	77	72	4	19	24	40	25	41	51	3	7
E47_tns	AK-KW	TM	b	7	В	МО	МО	Ah,p-AB-Bg-CBgg	72	TRUE	TRUE	68	FALSE	E2,G3	42	22	88	-1	2	19	11	40	30	41	59	4	8
E02_kal3	WE-WI-BG	HT	e	3	В	MO	МО	Ah,1-Ah,(g)2-Bg-CBgg	69	TRUE	TRUE	69	FALSE	E2,G3	31	31	74	-1	4	16	16	45	40	39	44	3	4
Es5bgs2	AK-KW	EE	a	2	В	MO	KO-über	Ah,p-B-[B]C(g)-Cgg1-Cgg2	65	TRUE	TRUE	65	FALSE	G3,PK	25	25	57	-1	3	18	12	30	25	52	63	2	5
E35_tns	WE-WI-BG	TM	d	1	٧	MO	KO-über	Ah-BAg-Bg-II CBgg	47	TRUE	TRUE	50	FALSE	E3,G4,PK	34	34	80	-1	2	18	22	55	25	27	53	0	6
E962	AK-KW	HF	a	3	В	MO	KO-über	A(h),p-II BA-II Bg-Bgg2-CBgg	62	TRUE	TRUE	62	TRUE	E2,G3	45	45	65	-1	2	14	18	25	20	61	62	7	5
E890	WE-WI-BG	НН	b	9	В	MO	KO-über	Ah-II AgBcn-II Bg-II CBgg	76	TRUE	TRUE	105	FALSE	E2,I2	42	42	68	-1	3	21	22	35	25	44	53	15	15
E1000	AK-KW	HF	d	3	Ε	KO	KO-über	Ah,p-Bg-Bgg	64	TRUE	TRUE	67	FALSE	E3,I2,PK	28	28	82	-1	2	14	18	60	35	26	47	3	3
E916	AK-KW	НМ	l	17	В	KO	KO-über	Ah-BAg-Bg(g)-II BCgg	58	TRUE	TRUE	73	FALSE	E2,G3,PK	48	48	62	-1	2	21	16	35	20	44	64	2	9
E1684	WE-WI-BG	НН	k	22	Ε	ML	KO-über	O-Ah-A(h)-II B(g)-III BCg(g)-III BCgg	42	TRUE	TRUE	60	FALSE	E3,I2	24	24	86	-1	3	16	26	22	28	62	46	0	2
E1182	WA	KR	d	3	Υ	MO	KO-über	Ol-Oh-A(hh)-II Bg-II (C)Bgg	63	TRUE	TRUE	61	FALSE	E4.I3	20	20	90	-1	6	14	22	65	40	21	38	0	3
E25_tns	AK-KW	TM	d	2	N	TO	KO-über	Aa,p-II Th,g-II Tf,gg-II Tr	52	TRUE	TRUE	55	TRUE	G4,R2,OTN	33	33	51	-1	12	19		55		26		2	0
Ols1 20210512	AK-KW	HF	b	8	٧	TO	KO-über	Ah,p,(g)-Ah,g-II Th,gg-III Cgg-III C	44	TRUE	TRUE	41	FALSE	E2,I2,G4,PT	41	41	42	83	4	26		40		34		0	0
E1750	WE-WI-BG	SF	a	1	G	HL	HL	Aa,gg-CggBcn-BCr	18	TRUE	TRUE	0	FALSE	E2,G6,R3	8	8	97	-1	11	21	24	25	30	54	46	0	0

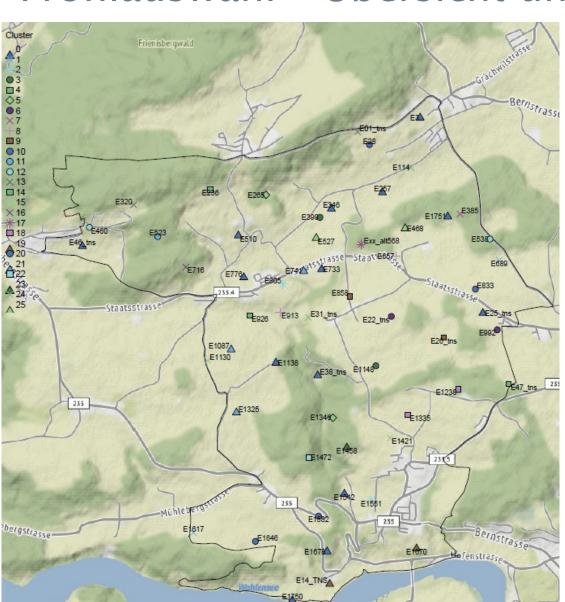
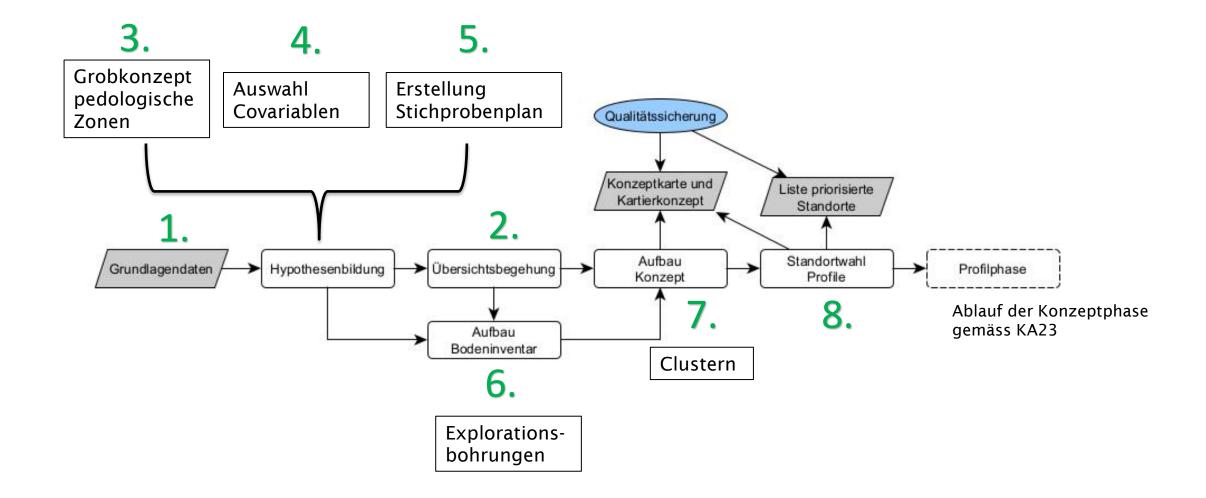


Tabelle 35: Anzahl Bohrungen nach Landschaftselement.

	alle	in Auswahl
EE	56	9
ER	1	
HF	26	3
HH	96	18
НМ	4	1
HP	2	
HR	1	
HT	13	7
HX	18	2
HY	2	
HZ	2	
KR	39	7
PF	4	2
SF	2	1
TC	4	1
TM	14	5
TS	2	1
TW	1	1

Kanton Bern Canton de Berne

5.2 Ubersichts-Statistiken gewählte Standorte


Tabelle 32: Anzahl Bohrungen nach Bodentyp.

	alle	in Auswahl
Auffüllung	0	0
Braunerde	113	22
Braunerde-Gley	11	3
Braunerde-Pseudogley	12	2
Buntgley	6	2
Fahlgley	1	1
Fluvisol	15	5
Halbmoor	1	1
Parabraunerde	24	3
Pseudogley	5	1
Regosol	8	2
Saure Braunerde	91	16

Tabelle 33: Anzahl Bohrungen nach Ausgangsmaterial dominant.

	alle	in Auswahl
AL	21	7
BS	1	0
HL	18	6
KO	19	4
ME	14	3
MG	3	1
ML	30	5
MO	145	27
SK	1	0
SS	32	4
TO	3	1

Zusammenfassung

